Nanoscale Imaging of Caveolin-1 Membrane Domains In Vivo
نویسندگان
چکیده
Light microscopy enables noninvasive imaging of fluorescent species in biological specimens, but resolution is generally limited by diffraction to ~200-250 nm. Many biological processes occur on smaller length scales, highlighting the importance of techniques that can image below the diffraction limit and provide valuable single-molecule information. In recent years, imaging techniques have been developed which can achieve resolution below the diffraction limit. Utilizing one such technique, fluorescence photoactivation localization microscopy (FPALM), we demonstrated its ability to construct super-resolution images from single molecules in a living zebrafish embryo, expanding the realm of previous super-resolution imaging to a living vertebrate organism. We imaged caveolin-1 in vivo, in living zebrafish embryos. Our results demonstrate the successful image acquisition of super-resolution images in a living vertebrate organism, opening several opportunities to answer more dynamic biological questions in vivo at the previously inaccessible nanoscale.
منابع مشابه
Freeze-fracture replica immunolabelling reveals caveolin-1 in the human cardiomyocyte plasma membrane
Mutations in or ablation of the gene encoding caveolin-3, a protein of muscle cell caveolae, result in forms of muscular dystrophy and cardiomyopathy. Another member of the caveolin gene family, caveolin-1, is widely considered not to be expressed in myocytes, yet ablation of the gene encoding this protein in mice also results in cardiomyopathy. By applying the high-resolution electron-microsco...
متن کاملSuper Resolution Microscopy Reveals that Caveolin-1 Is Required for Spatial Organization of CRFB1 and Subsequent Antiviral Signaling in Zebrafish
Understanding spatial distribution and dynamics of receptors within unperturbed membranes is essential for elucidating their role in antiviral signaling, but conventional studies of detergent-resistant membrane fractions cannot provide this information. Caveolae are integral to numerous signaling pathways and these membrane domains have been previously implicated in viral entry but not antivira...
متن کاملCharacterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease
Caveolae are 50-100-nm membrane microdomains that represent a subcompartment of the plasma membrane. Previous morphological studies have implicated caveolae in (a) the transcytosis of macromolecules (including LDL and modified LDLs) across capillary endothelial cells, (b) the uptake of small molecules via a process termed potocytosis involving GPI-linked receptor molecules and an unknown anion ...
متن کاملInter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells
OBJECTIVE The role and mechanisms of insulin receptor internalization remain incompletely understood. Previous trafficking studies of insulin receptors involved fluorescent protein tagging at their termini, manipulations that may be expected to result in dysfunctional receptors. Our objective was to determine the trafficking route and molecular mechanisms of functional tagged insulin receptors ...
متن کاملTwo distinct caveolin-1 domains mediate the functional interaction of caveolin-1 with protein kinase A.
Numerous components of the cAMP-based signaling cascade, namely G-proteins and G- protein coupled receptors, adenylyl cyclase, and protein kinase A (PKA) have been localized to caveolae and shown to be regulated by the caveolar marker proteins, the caveolins. In order to gain mechanistic insights into these processes in vivo, we have assessed the functional interaction of caveolin-1 (Cav-1) wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015